EXAMPLE 5 Converting from Polar Form to Rectangular Form

Convert $r = 4 \sec \theta$ to rectangular form and identify the graph. Support your answer with a polar graphing utility.

EXAMPLE 6 Converting from Rectangular Form to Polar Form

Convert
$$(x - 3)^2 + (y - 2)^2 = 13$$
 to polar form.

$$x^2 - (ax + 9 + y^2 - 4y + 4 = 13)$$

$$x^2 + y^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y + 13 = 13)$$

$$x^2 - (ax - 4y +$$

EXAMPLE 7 Using a Radar Tracking System

Radar detects two airplanes at the same altitude. Their polar coordinates are (8 mi, 110°) and (5 mi, 15°). (See Figure 6.44.) How far apart are the airplanes?

$$x^{2} = 3^{2} + 3^{2} - 2(8)5\cos 95^{\circ}$$
 $x^{2} = 9.79\pi$
 $x = 9.79\pi$

EXAMPLE 6 Converting from Rectangular Form to Polar Form

Convert $(x - 3)^2 + (y - 2)^2 = 13$ to polar form.