Graphs of Polar Equations

The three types of symmetry figures to be considered will have are:

1. The x-axis (polar axis) as a line of symmetry (Figure 6.45a).
2. The y-axis (the line $\theta=\pi / 2$) as a line of symmetry (Figure 6.45b).
3. The origin (the pole) as a point of symmetry (Figure 6.45 c).

Symmetry Tests for Polar Graphs

The graph of a polar equation has the indicated symmetry if either replacement produces an equivalent polar equation.

To Test for Symmetry
 Replace
 By

(r, θ)
(r, θ)
(r, θ)

1. about the x-axis,
2. about the y-axis,
3. about the origin,

$$
(r,-\theta) \text { or }(-r, \pi-\theta) .
$$

$$
(-r,-\theta) \text { or }(r, \pi-\theta) .
$$

$$
(-r, \theta) \text { or }(r, \theta+\pi) \text {. }
$$

EXAMPLE 1 Testing for Symmetry
Use the symmetry tests to prove that the graph of $r=4 \sin 3 \theta$ is symmetric about the y-axis.

Test for y-axis symmetry

$$
\begin{aligned}
-r & =4 \sin (-3 \theta) \\
-r & =-4 \sin (3 \theta) \\
r & =4 \sin (3 \theta)
\end{aligned}
$$

makes the original!

EXAMPLE 2 Finding Maximum r-Values

Find the maximum r-value of $r=2+2 \cos \theta$.

EXAMPLE 3 Finding Maximum \boldsymbol{r}-Values

Identify the points on the graph of $r=3 \cos 2 \theta$ for $0 \leq \theta \leq 2 \pi$ that give maximum r-values.

$$
y=|3 \cos 2 \theta|
$$

EXAMPLE 4 Analyzing a Rose Curve
Analyze the graph of the rose curve $r=3 \sin 4 \theta$.

Domain: $(-\infty, \infty)$
Range: $[-3,3]$
Continuous
Symmetry: x-axis, y-axis, orisin
Bounded
No Asymptotes

Graphs of Rose Curves

The graphs of $r=a \cos n \theta$ and $r=a \sin n \theta$, where $n>1$ is an integer, have the following characteristics:

Domain: All reals
Range: [-|a|, $|a|$]
Continuous
Symmetry: n even, symmetric about x-, y-axis, origin n odd, $r=a \cos n \theta$ symmetric about x-axis n odd, $r=a \sin n \theta$ symmetric about y-axis
Bounded
Maximum r-value: $|a|$
No asymptotes
Number of petals: n, if n is odd
$2 n$, if n is even

Graphs of Rose Curves

The graphs of $r=a \cos n \theta$ and $r=a \sin n \theta$, where $n>1$ is an integer, have the following characteristics:

Domain: All reals
Range: [-|a|, $|a|$]
Continuous
Symmetry: n even, symmetric about x-, y-axis, origin n odd, $r=a \cos n \theta$ symmetric about x-axis n odd, $r=a \sin n \theta$ symmetric about y-axis
Bounded
Maximum r-value: $|a|$
No asymptotes
Number of petals: n, if n is odd
$2 n$, if n is even

Limaçon Curves

The limaçon curves are graphs of polar equations of the form

$$
r=a \pm b \sin \theta \quad \text { and } \quad r=a \pm b \cos \theta
$$

Limaçon with an inner loop: $\frac{a}{b}<1$

Dimpled limaçon: $1<\frac{a}{b}<2$

Cardioid: $\frac{a}{b}=1$

Convex limaçon: $\frac{a}{b} \geq 2$

