## **Graphs of Polar Equations**

The three types of symmetry figures to be considered will have are:

- **1.** The *x*-axis (polar axis) as a line of symmetry (Figure 6.45a).
- **2.** The y-axis (the line  $\theta = \pi/2$ ) as a line of symmetry (Figure 6.45b).
- 3. The origin (the pole) as a point of symmetry (Figure 6.45c).



#### **Symmetry Tests for Polar Graphs**

The graph of a polar equation has the indicated symmetry if either replacement produces an equivalent polar equation.

| To | Test for Symmetry         | Replace       | By                                       |
|----|---------------------------|---------------|------------------------------------------|
| 1. | about the <i>x</i> -axis, | $(r, \theta)$ | $(r, -\theta)$ or $(-r, \pi - \theta)$ . |
| 2. | about the y-axis,         | $(r, \theta)$ | $(-r, -\theta)$ or $(r, \pi - \theta)$ . |
| 3. | about the origin,         | $(r, \theta)$ | $(-r, \theta)$ or $(r, \theta + \pi)$ .  |

## **EXAMPLE 1** Testing for Symmetry

Use the symmetry tests to prove that the graph of  $r = 4 \sin 3\theta$  is symmetric about the y-axis.



Test for y-axis symmetry  

$$(-r, -\theta)$$
 \( -\frac{1}{2}\)
$$-r = 4 \sin (-3\theta)$$

$$-r = -4 \sin (3\theta)$$

$$r = 4 \sin (3\theta)$$
makes the original!

# **EXAMPLE 2** Finding Maximum *r*-Values

Find the maximum r-value of  $r = 2 + 2 \cos \theta$ .



## **EXAMPLE 3** Finding Maximum *r*-Values

Identify the points on the graph of  $r = 3 \cos 2\theta$  for  $0 \le \theta \le 2\pi$  that give maximum r-values.





## **EXAMPLE 4** Analyzing a Rose Curve

Analyze the graph of the rose curve  $r = 3 \sin 4\theta$ .



Domain: (-00)-00)
Range: [-3,3]
Continuous
Symmetry: X-oxis, y-axis, or: Sin
Bounded
NO Asymptotes

#### **Graphs of Rose Curves**

The graphs of  $r = a \cos n\theta$  and  $r = a \sin n\theta$ , where n > 1 is an integer, have the following characteristics:

Domain: All reals

Range: [-|a|, |a|]

Continuous

Symmetry: n even, symmetric about x-, y-axis, origin

n odd,  $r = a \cos n\theta$  symmetric about x-axis

n odd,  $r = a \sin n\theta$  symmetric about y-axis

Bounded

Maximum r-value: |a|

No asymptotes

Number of petals: n, if n is odd

2n, if n is even

#### **Graphs of Rose Curves**

The graphs of  $r = a \cos n\theta$  and  $r = a \sin n\theta$ , where n > 1 is an integer, have the following characteristics:

Domain: All reals

Range: [-|a|, |a|]

Continuous

Symmetry: n even, symmetric about x-, y-axis, origin

n odd,  $r = a \cos n\theta$  symmetric about x-axis

n odd,  $r = a \sin n\theta$  symmetric about y-axis

Bounded

Maximum r-value: |a|

No asymptotes

Number of petals: n, if n is odd

2n, if n is even

## Limaçon Curves

The **limaçon curves** are graphs of polar equations of the form

 $r = a \pm b \sin \theta$  and  $r = a \pm b \cos \theta$ 



Limaçon with an inner loop:  $\frac{a}{b} < 1$ 



Cardioid:  $\frac{a}{b} = 1$ 



Dimpled limaçon:  $1 < \frac{a}{b} < 2$ 



Convex limaçon:  $\frac{a}{b} \ge 2$