What does x and y have to be?

2. Prove this relationship between a diameter and a chord.

Given: $\overline{M I}$ is a diameter of circle \boldsymbol{O}.
$\overline{M I} \perp \overline{D A}$
Prove: $\overline{M I}$ bisects $\overline{D A}$.
$\overline{M I}$ bisects $\overparen{D A}$.

Statements	Reasons
1. $\overline{M I}$ is a diameter of circle O. $\overline{M I} \perp \overline{D A}$	1. Given
2. Connect points O and D to form radius $\overline{O D}$. Connect points O and A to form radius $\overline{O A}$.	2. Construction

The Diameter-Chord Theorem states: "If a circle's diameter is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord."

Congruent chords appear to be equidistant from the center point or tne circle. This observation can be proved and stated as a theorem.
4. Prove this relationship regarding chords.

Given: $\overline{C H} \cong \overline{D R}$

$$
\begin{aligned}
& \overline{O E} \perp \overline{C H} \\
& \overline{O I} \perp \overline{D R}
\end{aligned}
$$

Prove: $\overline{C H}$ and $\overline{D R}$ are equidistant from center 0 .

The Equidistant Chord Theorem

states: "If two chords of the same circle or congruent circles are congruent, then they are equidistant from the center of the circle."

C

The Equidistant Chord Converse Theorem states: "If two chords of the same circle or congruent circles are equidistant from the center of the circle, then the chords are congruent."
3. Prove this conjecture relating chords and their corresponding arcs.

Given: $\overline{C H} \cong \overline{D R}$
Prove: $\overparen{C H} \cong \overparen{D R}$

The Congruent Chord-Congruent Arc Theorem states: "If two chords of the same circle or congruent circles are congruent, then their corresponding arcs are congruent."

The Congruent Chord-Congruent Arc Converse Theorem states:
"If arcs of the same circle or congruent circles are congruent, then their corresponding chords are congruent."

