Circle the functions which are *quartics*.

$$x^4 + 5x^3 - 13x^2 + 7x = 0$$

$$(x+2)(x-2)(x+5)=0$$
 $(x^2-4)(x^2+1)=0$

 $(2x - 3)(4x^{2} + 6x + 9) = 0 \qquad x^{3} - 5x^{2} - 8x + 12 = 0$

You have determined that a cubic function has 3 zeros. The zeros may be real, imaginary, or have multiplicity depending on the key characteristics of the functions that built it. Similarly, the Fundamental Theorem of Algebra guarantees that a quartic function has 4 zeros.

 List different combinations of function types that multiply to build a quartic function. Analyze the table shown. The function h(x) is the product of f(x) and g(x).

x	f (x)	<i>g</i> (<i>x</i>)	$h(x) = f(x) \cdot g(x)$
-2	8	4	32
-1	5	1	5
0	4	0	0
1	5	1	5
2	8	4	32
3	13	9	117

M1-265

What would the graph of f(x) and the graph of g(x) look like?

a. Determine whether *h*(*x*) is a quartic function. Explain your reasoning.

b. Determine the number of real and imaginary zeros of h(x).
Explain your reasoning.

c. Describe the end behavior of *h*(*x*). How does this help you determine whether the function is quartic or not?

Analyze the table shown. The function m(x) is the product of j(x) and k(x).

x	j (x)	<i>k</i> (<i>x</i>)	$m(x) = j(x) \cdot k(x)$
-2	4	-1	-4
-1	0	0	0
0	-2	1	-2
1	-2	2	-4
2	0	3	0
3	4	4	16

a. Determine whether *m*(*x*) is a quartic function. Explain your reasoning.

M1-266

b. Determine the number of real and imaginary zeros of m(x).
Explain your reasoning.

c. Describe the end behavior of *m*(*x*). How does this help you determine whether the function is quartic or not?

Analyze the table shown. The function v(x) is the product of t(x) and w(x).

x	<i>t</i> (<i>x</i>)	<i>w</i> (<i>x</i>)	$v(x) = t(x) \cdot w(x)$
-2	4	-11	-44
-1	3	-6	-18
0	4	-3	-12
1	7	-2	-14
2	12	-3	-36
3	19	-6	-114

a. Determine whether v(x) is a quartic function. Explain your reasoning.

b. Determine the number of real and imaginary zeros of v(x).
Explain your reasoning.

c. Describe the end behavior of *v*(*x*). How does this help you determine whether the function is quartic or not?