Circle the functions which are quartics.

$$
\begin{gathered}
x^{4}+5 x^{3}-13 x^{2}+7 x=0 \\
(x+2)(x-2)(x+5)=0 \quad\left(x^{2}-4\right)\left(x^{2}+1\right)=0 \\
(2 x-3)\left(4 \mathrm{x}^{2}+6 \mathrm{x}+9\right)=0 \quad x^{3}-5 x^{2}-8 x+12=0
\end{gathered}
$$ real, imaginary, or have multiplicity depending on the key characteristics of the functions that built it. Similarly, the Fundamental Theorem of Algebra guarantees that a quartic function has 4 zeros.

1. List different combinations of function types that multiply to

 build a quartic function.2. Analyze the table shown. The function $h(x)$ is the product of $f(x)$ and $g(x)$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$	$\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{g}(\boldsymbol{x})$
-2	8	4	32
-1	5	1	5
0	4	0	0
1	5	1	5
2	8	4	32
3	13	9	117

a. Determine whether $h(x)$ is a quartic function. Explain your reasoning.
b. Determine the number of real and imaginary zeros of $\boldsymbol{h}(\boldsymbol{x})$.

Explain your reasoning.
c. Describe the end behavior of $\boldsymbol{h}(\boldsymbol{x})$. How does this help you determine whether the function is quartic or not?
3. Analyze the table shown. The function $m(x)$ is the product of $j(x)$ and $k(x)$.

\boldsymbol{x}	$\boldsymbol{j}(\boldsymbol{x})$	$\boldsymbol{k}(\boldsymbol{x})$	$\boldsymbol{m}(\boldsymbol{x})=\boldsymbol{j}(\boldsymbol{x}) \cdot \boldsymbol{k}(\boldsymbol{x})$
-2	4	-1	-4
-1	0	0	0
0	-2	1	-2
1	-2	2	-4
2	0	3	0
3	4	4	16

a. Determine whether $\boldsymbol{m}(x)$ is a quartic function. Explain your reasoning.
b. Determine the number of real and imaginary zeros of $m(x)$. Explain your reasoning.
c. Describe the end behavior of $m(x)$. How does this help you determine whether the function is quartic or not?
4. Analyze the table shown. The function $v(x)$ is the product of $t(x)$ and $w(x)$.

\boldsymbol{x}	$\boldsymbol{t}(\boldsymbol{x})$	$\boldsymbol{w}(\boldsymbol{x})$	$\boldsymbol{v}(\boldsymbol{x})=\boldsymbol{t}(\boldsymbol{x}) \cdot \boldsymbol{w}(\boldsymbol{x})$
-2	4	-11	-44
-1	3	-6	-18
0	4	-3	-12
1	7	-2	-14
2	12	-3	-36
3	19	-6	-114

a. Determine whether $v(x)$ is a quartic function. Explain your reasoning.
b. Determine the number of real and imaginary zeros of $v(x)$. Explain your reasoning.
c. Describe the end behavior of $\boldsymbol{v}(\boldsymbol{x})$. How does this help you determine whether the function is quartic or not?

