Warm Up

Solve each proportion.

1.
$$\frac{x}{22} = \frac{10}{4}$$

$$2.\frac{5}{23} = \frac{n}{5}$$

$$3.\frac{16}{16} = \frac{8}{y}$$

$$4. \frac{22}{4} = \frac{p}{10}$$

The game of marbles is played in a circle. The goal is to knock your opponents marbles outside of the circle by flicking a shooter marble at the other marbles in the circle. The shooter marble is often larger than the other marbles.

Ravi placed a shooter marble near three smaller marbles as shown.

Can you describe the 3 smaller marbles as being collinear?

When an interior angle of a triangle is bisected, you can observe proportional relationships among the sides of the triangles formed. You will be able to prove that these relationships apply to all triangles.

1. Consider $\triangle ABC$.

5. Consider the given statement and diagram to prove that a bisector of an angle divides the opposite side into two segments whose lengths are proportional to the lengths of the sides adjacent to the angle.

Given: AD bisects ∠BAC

Prove: $\frac{AB}{AC} = \frac{BD}{CD}$

a. Draw an auxiliary line parallel to \overline{AB} through point C. Then extend \overline{AD} until it intersects the auxiliary line. Label the point of intersection, point E.

b. Complete the proof to prove the conjecture.

Statements	Reasons
1. \overline{AD} bisects $\angle BAC$	1. Given
2. $\overline{CE} \parallel \overline{AB}$	2. Construction
3. $\angle BAE \cong \angle CAD$	3. Definition of angle bisector
4. ∠BAE ≅ ∠CEA	4. Alternate Interior Angle Theorem
5. $\angle CEA \cong \angle CAD$	5. Transitive Property
6. $\overline{AC} \cong \overline{EC}$	6. Isosceles Triangle Base Angles Converse Theorem

7.
$$AC = EC$$

$$8.\angle BCE \cong \angle ABC$$

9.
$$\triangle DAB \sim \triangle DEC$$

$$10. \frac{AB}{EC} = \frac{BD}{CD}$$

11.
$$\frac{AB}{AC} = \frac{BD}{CD}$$

- 7. Definition of congruent segments
- 8. Alternate Interior Angle Theorem
- 9 AA ~
- 10. Corresponding sides of similar triangles are proportional
- 11 Substitution

Because your conjecture has been proved to be true, you can now refer to it as a theorem. The **Angle Bisector/Proportional Side Theorem** states: "A bisector of an angle in a triangle divides the opposite side into two segments whose lengths are in the same ratio as the lengths of the sides adjacent to the angle."