Warm Up

Solve each proportion.

1. $\frac{x}{22}=\frac{10}{4}$
2. $\frac{5}{23}=\frac{n}{5}$
3. $\frac{16}{16}=\frac{8}{y}$
4. $\frac{22}{4}=\frac{p}{10}$

The game of marbles is played in a circle. The goal is to knock your opponents marbles outside of the circle by flicking a shooter marble at the other marbles in the circle. The shooter marble is often larger than the other marbles.

Ravi placed a shooter marble near three smaller marbles as shown.

Can you describe the 3 smaller marbles as being collinear?

When an interior angle of a triangle is bisected, you can observe proportional relationships among the sides of the triangles formed. You will be able to prove that these relationships apply to all triangles.

1. Consider $\triangle A B C$.

5. Consider the given statement and diagram to prove that a
bisector of an angle divides the opposite side into two segments whose lengths are proportional to the lengths of the sides adjacent to the angle.

Given: $\overline{A D}$ bisects $\angle B A C$

Prove: $\frac{A B}{A C}=\frac{B D}{C D}$

Statements	Reasons	
1. $\overline{A D}$ bisects $\angle B A C$	1. Given	
2. $\overline{C E} \\| \overline{A B}$	2. Construction	
3. $\angle B A E \cong \angle C A D$	3. Definition of angle bisector	
4. $\angle B A E \cong \angle C E A$	4. Alternate Interior Angle Theorem	
5. $\angle C E A \cong \angle C A D$	5. Transitive Property	
6. $\overline{A C} \cong \overline{E C}$	6. Isosceles Triangle Base Angles Converse Theorem	

$$
\begin{aligned}
& \text { 7. } A C=E C \\
& \text { 8. } \angle B C E \cong \angle A B C \\
& \text { 9. } \triangle D A B \sim \triangle D E C \\
& \text { 10. } \frac{A B}{E C}=\frac{B D}{C D} \\
& \text { 11. } \frac{A B}{A C}=\frac{B D}{C D}
\end{aligned}
$$

7. Definition of congruent segments
8. Alternate Interior Angle Theorem
9. $A A \sim$

Corresponding sides of similar
10. triangles are proportional
11. Substitution

Because your conjecture has been proved to be true, you can now refer to it as a theorem. The Angle Bisector/Proportional Side Theorem states: "A bisector of an angle in a triangle divides the opposite side into two segments whose lengths are in the same ratio as the lengths of the sides adjacent to the angle."

