1)What is the reference angle in the picture?
2)Identify the Hypotenuse, the adjacent leg, and the opposite leg.
 triangles. You can use what you know about the $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem to determine the exact ratios.

10. Given a leg length x, determine the lengths of the other sides of the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Label the triangle.

11. Determine the ratio of the:
a. opposite side length to the length of the hypotenuse.
b. adjacent side length to the length of the hypotenuse.
. opposite side length to the adjacent side length.

Remember:

To rationalize the denominator of a fraction involving radicals, multiply the fraction by a form of 1 so that the product in the denominator includes a perfect square radicand.
12. Determine the unknown side lengths. Rationalize the denominator.

b. Meena is picking oranges from the tree in her yard. She rests a 12-foot ladder against the tree at a 45° angle. How far is the top of the ladder from the ground?

Triangle $P Q R$ shown is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

1. Choose any point along the hypotenuse of $\triangle P Q R$ and label it point D. Then construct a vertical line segment, $\overline{D E}$, connecting with side $\overline{P R}$ so that $\overline{D E} \perp \overline{P R}$. Label the other endpoint as point E.
2. Measure each of the sides of the similar right triangles in millimeters. Record the side length measurements in the table.

Triangle Name	Length of Side Opposite $\angle \boldsymbol{P}$	Length of Side Adjacent to $\angle \boldsymbol{P}$	Length of Hypotenuse
$\triangle P Q R$			
$\triangle P D E$			

3. Determine each side length ratio for the triangles using $\angle P$ as the reference angle.

Triangle Name	$\frac{\text { side opposite } \angle \boldsymbol{P}}{\text { hypotenuse }}$	$\frac{\text { side adjacent to } \angle \boldsymbol{P}}{\text { hypotenuse }}$	$\frac{\text { side opposite } \angle \boldsymbol{P}}{\text { side adjacent to } \angle \boldsymbol{P}}$
$\triangle P Q R$			
$\triangle P D E$			

You have estimated certain constant ratios of side lengths in $30^{\circ}-60^{\circ}-90^{\circ}$
triangles. You can use what you know about the $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle
Theorem to determine the exact ratios.

9. Given a length of the shortest side, x, determine the lengths of the other sides of the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. Label the triangle.
10. Determine the ratio of the:
a. opposite side length to the length of the hypotenuse.
b. adjacent side length to the length of the hypotenuse.
c. opposite side length to the adjacent side length.

