Solving Rational Equations
When we multiply or divide an equation by an expression containing variables. the resulting equation may have solutions that are not solutions of the original equation. These are extraneous solutions. For this reason we must check each solution of the resulting equation in the original equation.

EXAMPLE 1 Solving by Clearing Fractions
Solve $\frac{x}{1}+\frac{3}{x}=\frac{4}{1}$

$$
L C D \Rightarrow x \cdot 1=x
$$

multiply both sides by LCD, x

$$
\begin{gathered}
x \cdot x+x \cdot \frac{3}{x}=x \cdot 4 \\
x^{2}+3=4 x
\end{gathered} \quad \begin{aligned}
& \text { set }=0 \\
& \begin{array}{c}
x^{2}-4 x+3=0 \\
(x-1)(x-3)=0 \\
1,3
\end{array}
\end{aligned}
$$

Solving Rational Equations
When we multiply or divide an equation by an expression containing variables, the resulting equation may have solutions that are not solutions of the original equation. These are extraneous solutions. For this reason we must check each solution of the resulting equation in the original equation.

EXAMPLE 1 Solving by Clearing Fractions
Solve $x+\frac{3}{x}=4$.

$$
\begin{aligned}
& 1+\frac{3}{1}=4 \\
& 3+\frac{3}{3}=4
\end{aligned}
$$

EXAMPLE 2 Solving a Rational Equation
Solve $x+\frac{1}{x-4}=0$.

$$
L C D \Rightarrow x-4
$$

$$
\begin{aligned}
& (x-4) \cdot x+(x-4) \cdot \frac{1}{x-4}=(x-4) \cdot 0 \\
& x^{2}-4 x+1=0 \\
& \frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm \sqrt{12}}{2} \\
& \frac{4}{2} \pm \frac{2) \sqrt{3}}{4} \quad \frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3}
\end{aligned}
$$

EXAMPLE 3 Eliminating Extraneous Solutions
Solve the equation

$$
\begin{aligned}
\frac{2 x}{x-1}+\frac{1}{x-3}= & \frac{2}{x^{2}-4 x+3} . \\
& (x-3)(x-1)
\end{aligned}
$$

$$
\angle C D=(x-3)(x-1)
$$

$$
\left.\begin{gathered}
(x-3)(x-1) \cdot 2 x \\
(x-1)
\end{gathered}+(x-3)(x-1) \cdot \frac{1}{(x-3)}=(x-3) \frac{(x-1) \cdot 2}{(x-3)(x-1)} \right\rvert\, \begin{gathered}
2 x(x-3)+(x-1)=2 \\
2 x^{2}-6 x+x-1=2 \\
2 x^{2}-5 x-3=0 \\
(2 x+1)(x-3)=0
\end{gathered}
$$

EXAMPLE 3 Eliminating Extraneous Solutions
Solve the equation $\frac{2 x}{x-1}+\frac{1}{x-3}=\frac{2}{x^{2}-4 x+3}$.

$$
\begin{aligned}
& \frac{2(3)}{3-1}+\frac{1}{3+3} \\
& 0.38 \\
& \frac{2\left(-\frac{1}{2}\right)}{-\frac{1}{2}-1}+\frac{1}{-\frac{1}{2}-3}=\frac{2}{\left(-\frac{1}{2}\right)^{2}-4\left(\frac{1}{2}\right)+3} \\
& \frac{\frac{1}{3}}{\frac{2}{3}-\frac{2}{7}}=\frac{-1}{\left.\frac{2}{5-3}\right)^{2}}
\end{aligned} \frac{1}{-\frac{7}{2}}=\frac{2}{4}+2+3 .
$$

EXAMPLE 4 Eliminating Extraneous Solutions
Solve

$$
\begin{gathered}
\frac{x-3}{x}+\frac{3}{x+2}+\frac{6}{x^{2}+2 x}=0 \\
x(x+2) \\
(x+2)(x-3)+3 x+6=0 \\
x^{2}-x-6+3 x+6=0
\end{gathered}
$$

No
solution!

$$
x^{2}+2 x=0
$$

$$
x(x+2)=0
$$

b b both extraneous

