60. Multiple Choice Which of the following is equal to $|1-\sqrt{3}|$?
(A) $1-\sqrt{3}$
(B) $\sqrt{3}-1$
(C) $(1-\sqrt{3})^{2}$
(D) $\sqrt{2}$ (E) $\sqrt{1 / 3}$
61. Multiple Choice Which of the following is the midpoint of the line segment with endpoints -3 and 2 ?
(A) $5 / 2$
(B) 1
(C) $-1 / 2$
(D) -1
(E) $-5 / 2$

$\sqrt{(x-h)^{2}+(y-k)^{2}}=p^{n}$

DEFINITION Standard Form Equation of a Circle

The standard form equation of a circle with center (h, k) and radius r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

Finding Standard Form Equations of Circles

Find the standard form equation of the circle.
(a) Center $(-4,1)$, radius 8
(b) Center $(0,0)$, radius 5

Verifying Right Triangles

It is a fact from geometry that the diagonals of a parallelogram bisect each other.

37. Prove that the figure determined by the points is an isosceles triangle: $(1,3),(4,7),(8,4)$
38. Prove that the diagonals of the figure determined by the points bisect each other.
(a) Square $(-7,-1),(-2,4),(3,-1),(-2,-6)$
(b) Parallelogram $(-2,-3),(0,1),(6,7),(4,3)$
39. (a) Find the lengths of the sides of the triangle in the figure.

(b) Writing to Learn Show that the triangle is a right triangle.
40. (a) Find the lengths of the sides of the triangle in the figure.

(b) Writing to Learn Show that the triangle is a right triangle.

In Exercises 41-44, find the standard form equation for the circle. 41. Center (1,2), radius 5
42. Center $(-3,2)$, radius 1
43. Center $(-1,-4)$, radius 3
44. Center $(0,0)$, radius $\sqrt{3}$

In Exercises 45-48, find the center and radius of the circle.
45. $(x-3)^{2}+(y-1)^{2}=36$
46. $(x+4)^{2}+(y-2)^{2}=121$
47. $x^{2}+y^{2}=5$
48. $(x-2)^{2}+(y+6)^{2}=25$
54. Writing to Learn Isosceles but Not Equilateral Triangle Prove that the triangle determined by the points $(3,0)$, $(-1,2)$, and $(5,4)$ is isosceles but not equilateral.
55. Writing to Learn Equidistant Point from Vertices of a Right Triangle Prove that the midpoint of the hypotenuse of the right triangle with vertices $(0,0),(5,0)$, and $(0,7)$ is equidistant from the three vertices.

