DEFINITION Slope of a Line

The **slope** of the nonvertical line through the points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{\triangle y}{\triangle x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

If the line is vertical, then $x_1 = x_2$ and the slope is undefined.

DEFINITION Point-Slope Form of an Equation of a Line

The **point-slope form** of an equation of a line that passes through the point (x_1, y_1) and has slope m is

$$y - y_1 = m(x - x_1).$$

DEFINITION Slope-Intercept Form of an Equation of a Line

The **slope-intercept form** of an equation of a line with slope m and y-intercept (0, b) is

$$y = mx + b$$
.

Forms of Equations of Lines

General form:

$$Ax + By + C = 0$$
, A and B not both zero

Slope-intercept form:

$$y = mx + b$$

Point-slope form:

$$y - y_1 = m(x - x_1)$$

Vertical line:

$$x = a$$

Horizontal line:

$$y = b$$

Use a Graphing Utility

Draw the graph of 2x + 3y = 6.

[-4, 6] by [-3, 5]

Parallel and Perpendicular Lines

- 1. Two nonvertical lines are parallel if and only if their slopes are equal.
- **2.** Two nonvertical lines are perpendicular if and only if their slopes m_1 and m_2 are opposite reciprocals. That is, if and only if

$$m_1 = -\frac{1}{m_2}$$

Finding an Equation of a Perpendicular Line

Find an equation of the line through P(2, -3) that is perpendicular to the line L with equation 4x + y = 3. Support the result with a grapher.

[-4.7, 4.7] by [-5.1, 1.1]