Solving Absolute Value Inequalities

Let u be an algebraic expression in x and let a be a real number with $a \ge 0$.

1. If |u| < a, then u is in the interval (-a, a). That is,

$$|u| < a$$
 if and only if $-a < u < a$.

2. If |u| > a, then u is in the interval $(-\infty, -a)$ or (a, ∞) , that is,

$$|u| > a$$
 if and only if $u < -a$ or $u > a$.

The inequalities < and > can be replaced with \le and \ge , respectively.

Solving an Absolute Value Inequality

Solve |x - 4| < 8.

Solving Another Absolute Value Inequality

Solve
$$|3x - 2| \ge 5$$
.

Solving a Quadratic Inequality

Solve
$$x^2 - x - 12 > 0$$
.

Solve $x^2 - x - 12 > 0$.

[-10, 10] by [-15, 15]

What if $x^2 - x - 12 < 0$

[-10, 10] by [-15, 15]

Solving Another Quadratic Inequality

Solve $2x^2 + 3x \le 20$.

Solving a Quadratic Inequality Graphically

Solve $x^2 - 4x + 1 \ge 0$ graphically.

Showing that a Quadratic Inequality

Solve
$$x^2 + 2x + 2 < 0$$
.

[-5, 5] by [-2, 5]

What if $x^2 + 2x + 2 > 0$

[-5, 5] by [-2, 5]