In Exercises 7–10, let A = (2, -1), B = (3, 1), C = (-4, 2), and D = (1, -5). Find the component form and magnitude of the vector.

8.
$$\overrightarrow{AB}$$
 + \overrightarrow{CD}

In Exercises 11 and 12, find (a) a unit vector in the direction of \overrightarrow{AB} and (b) a vector of magnitude 3 in the opposite direction.

11.
$$A = (4, 0), B = (2, 1)$$

In Exercises 13 and 14, find (a) the direction angles of **u** and **v** and (b) the angle between **u** and **v**.

14.
$$\mathbf{u} = \langle -2, 4 \rangle, \, \mathbf{v} = \langle 6, 4 \rangle$$

In Exercises 15–18, convert the polar coordinates to rectangular coordinates.

15. $(-2.5, 25^{\circ})$

17. $(2, -\pi/4)$

18. $(3.6, 3\pi/4)$

In Exercises 21-24, rectangular coordinates of point P are given. Find polar coordinates of P that satisfy these conditions:

(a)
$$0 \le \theta \le 2\pi$$
 (b) $-\pi \le \theta \le \pi$ (c) $0 \le \theta \le 4\pi$

21.
$$P = (2, -3)$$

In Exercises 53–60, decide whether the graph of the given polar equation appears among the four graphs shown.

54.
$$r = 2 + \sin \theta$$

56.
$$r = 3 |\sin 3\theta|$$

58.
$$r = 1 - 2 \cos \theta$$

60.
$$r = 3 - 2 \tan \theta$$

In Exercises 25-30, eliminate the parameter t and identify the graph.

25.
$$x = 3 - 5t$$
, $y = 4 + 3t$

27.
$$x = 2t^2 + 3$$
, $y = t - 1$

In Exercises 61–64, convert the polar equation to rectangular form and identify the graph.

62.
$$r = -2 \sin \theta$$

64.
$$r = 3 \sec \theta$$

In Exercises 65–68, convert the rectangular equation to polar form. Graph the polar equation.

65.
$$y = -4$$

67.
$$(x-3)^2 + (y+1)^2 = 10$$

74. Flight Engineering An airplane is flying on a bearing of 80° at 540 mph. A wind is blowing with the bearing 100° at 55 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual speed and direction of the airplane.

81. Ferris Wheel Problem The lowest point of a Ferris wheel (6 o'clock) of radius 40 ft is 10 ft above the ground, and the center is on the y-axis. Find parametric equations for Henry's position as a function of time t in seconds if his starting position (t = 0) is the point (0, 10) and the wheel turns at the rate of one revolution every 15 sec.

86. Field Goal Kicking Spencer practices kicking field goals 40 yd from a goal post with a crossbar 10 ft high. If he kicks the ball with an initial velocity of 70 ft/sec at a 45° angle with the horizontal (see figure), will Spencer make the field goal if the kick sails "true"?

