
Asymptotes

Consider the graph of the function $f(x) = \frac{2x^2}{4 - x^2}$ in Figure 1.32.

FIGURE 1.32 The graph of $f(x) = 2x^2/(4 - x^2)$ has two vertical asymptotes and one horizontal asymptote.

VA:
$$\begin{array}{cccc}
4 - x^2 &= 0 \\
x &= 47
\end{array}$$

$$\begin{array}{cccc}
+ 4 &= 0 \\
x &= 47
\end{array}$$

$$\begin{array}{cccc}
+ 4 &= 0 \\
x &= 47
\end{array}$$

$$\begin{array}{cccc}
+ 4 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= -2
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= 0
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= 0
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= 0
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= 0
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= 0
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 2 &= 0
\end{array}$$

$$\begin{array}{cccc}
- 2 &= 0 \\
- 3 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{cccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{cccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{cccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

$$\begin{array}{ccccc}
- 2 &= 0
\end{array}$$

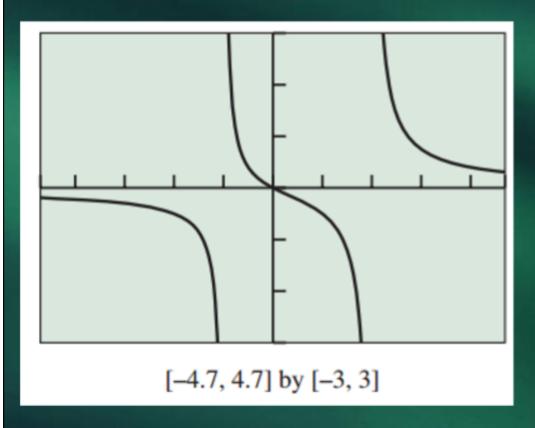
DEFINITION Horizontal and Vertical Asymptotes

The line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if f(x) approaches a limit of b as x approaches $+\infty$ or $-\infty$.

In limit notation:

$$\lim_{x \to -\infty} f(x) = b \quad \text{or } \lim_{x \to +\infty} f(x) = b.$$

The line x = a is a **vertical asymptote** of the graph of a function y = f(x) if f(x) approaches a limit of $+\infty$ or $-\infty$ as x approaches a from either direction.


In limit notation:

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{+}} f(x) = \pm \infty.$$

Identifying the Asymptotes of a Graph

Identify any horizontal or vertical asymptotes of the graph of

$$y = \frac{x}{x^2 - x - 2}$$

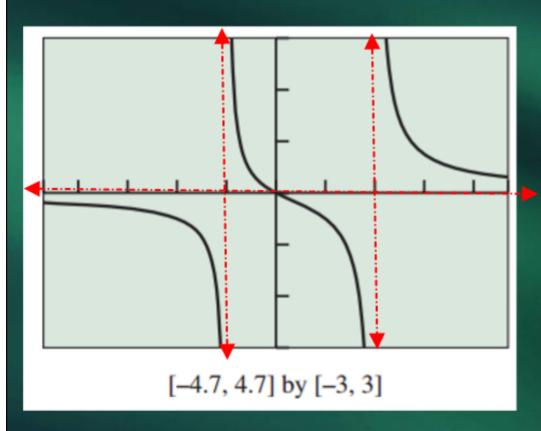
DEFINITION Horizontal and Vertical Asymptotes

The line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if f(x) approaches a limit of b as x approaches $+\infty$ or $-\infty$.

In limit notation:

$$\lim_{x \to -\infty} f(x) = b \text{ or } \lim_{x \to +\infty} f(x) = b.$$

The line x = a is a vertical asymptote of the graph of a function y = f(x) if f(x) approaches a limit of $+\infty$ or $-\infty$ as x approaches a from either direction.

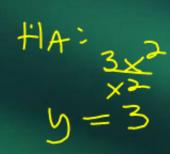

In limit notation:

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{+}} f(x) = \pm \infty.$$

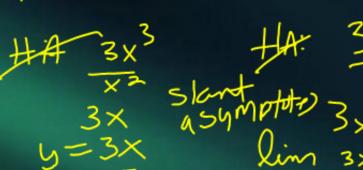
Identifying the Asymptotes of a Graph

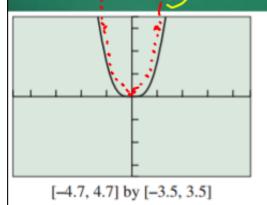
Identify any horizontal or vertical asymptotes of the graph of

$$y = \frac{x}{x^2 - x - 2}$$

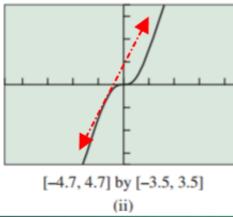

VA:
$$x^{2}-x-2=0$$

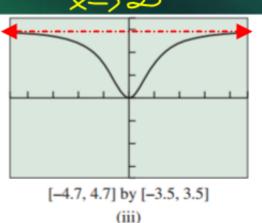
 $(x-2)(x+1)=0$
 $x=2$ $x=2$ $x=2$
 $x=3$ $x=2$
 $x=3$ $x=3$
 $x=3$ $x=3$
 $x=3$ $x=3$

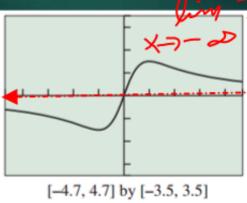

Matching Functions Using End Behavior


(a)
$$y = \frac{3x}{x^2 + 1}$$
 (b) $y = \frac{3x^2}{x^2 + 1}$ (c) $y = \frac{3x^3}{x^2 + 1}$ (d) $y = \frac{3x^4}{x^2 + 1}$

$$\lim_{X\to\infty} \frac{3}{X} = 0$$




VA: None



(i)

(iv)