Identifying a Piecewise-Defined Function

Which of the twelve basic functions has the following piecewise definition over separate intervals of its domain?
$f(x)=\left\{\begin{aligned} x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{aligned}\right.$

Identifying a Piecewise-Defined Function

Which of the twelve basic functions has the following piecewise definition over separate intervals of its domain?

$$
\begin{array}{r}
f(x)=\left\{\begin{array}{l}
x \text { if } x \geq 0 \\
(-x) \text { if } x<0
\end{array}\right. \\
\operatorname{Domain}(-\infty, \infty) \\
\text { Range } \\
{[0, \infty)}
\end{array}
$$

Looking for a Horizontal Asymptote

Does the graph of $y=\ln x$ (Figure 1.42) have a horizontal asymptote?

$[-600,5000]$ by $[-5,12]$
FIGURE 1.53 The graph of $y=\ln x$ still appears to have a horizontal asymptote, despite the much larger window than in
Figure 1.42. (Example 8)

Defining a Function Piecewise

Using basic functions from this section, construct a piecewise definition for the function whose graph is shown in Figure 1.52. Is your function continuous? yes!

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 0 \\ \sqrt{x} & \text { if } x>0 \\ \text { squatic } \\ \text { square root }\end{cases}
$$

