Identifying a Piecewise-Defined Function

Which of the twelve basic functions has the following piecewise definition over sep-

arate intervals of its domain?

$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Identifying a Piecewise-Defined Function

Which of the twelve basic functions has the following piecewise definition over sep-

Linear

arate intervals of its domain?

$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ x & \text{if } x < 0 \end{cases}$$

Domain (-ob, 2) Range [0,0)

Looking for a Horizontal Asymptote

Does the graph of $y = \ln x$ (Figure 1.42) have a horizontal asymptote?

[-600, 5000] by [-5, 12]

FIGURE 1.53 The graph of $y = \ln x$ still appears to have a horizontal asymptote, despite the much larger window than in Figure 1.42. (Example 8)

Defining a Function Piecewise

Using basic functions from this section, construct a piecewise definition for the function whose graph is shown in Figure 1.52. Is your function continuous?

