7. Code Words How many five-character code words are there if the first character is always a letter and the other characters are letters and/or digits?

10. Forming Committees A club has 45 members, and its membership committee has three members. How many different membership committees are possible?

35. Coin Toss A fair coin is tossed six times. Find the probability of the event "HHTHTT."

In Exercises 47 and 48, find the first 6 terms and the 40th term of the sequence.

47.
$$a_n = \frac{n^2 - 1}{n + 1}$$

48.
$$b_k = \frac{(-2)^k}{k+1}$$

In Exercises 55–62, the sequences are arithmetic or geometric. Find an explicit formula for the *n*th term. State the common difference or ratio.

57. 10, 12, 14.4, 17.28, . . . **58.**
$$\frac{1}{8}$$
, $-\frac{1}{4}$, $\frac{1}{2}$, -1 , . . .

- **61.** The fourth and ninth terms of a geometric sequence are -192 and 196,608, respectively.
- **62.** The third and eighth terms of an arithmetic sequence are 14 and -3.5, respectively.

In Exercises 63–66, find the sum of the terms of the arithmetic sequence.

65. 2.5,
$$-0.5$$
, -3.5 , ..., -75.5

In Exercises 67–70, find the sum of the terms of the geometric sequence.

In Exercises 83–86, write the sum in sigma notation.

83.
$$-8 - 3 + 2 + \cdots + 92$$

84.
$$4 - 8 + 16 - 32 + \cdots - 2048$$

85.
$$1^2 + 3^2 + 5^2 + \cdots$$

86.
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$$

In Exercises 77–82, determine whether the geometric series converges. If it does, find its sum.

77.
$$\sum_{j=1}^{\infty} 2\left(\frac{3}{4}\right)^{j}$$

79.
$$\sum_{i=1}^{\infty} 4\left(-\frac{4}{3}\right)^{j}$$

81.
$$\sum_{k=1}^{7} 3(0.5)^k$$

78.
$$\sum_{k=1}^{\infty} 2\left(-\frac{1}{3}\right)^k$$

80.
$$\sum_{k=1}^{\infty} 5\left(\frac{6}{5}\right)^k$$

82.
$$\sum_{k=1}^{\infty} (1.2)^k$$