- 2. Describe each graph in relation to its basic function.
 - **a.** Compare $f(x) = ax^2$ when a > 1 to the basic function $g(x) = x^2$.

b. Compare $f(x) = ax^2$ when 0 < a < 1 to the basic function $g(x) = x^2$.

PROBLEM 3 Name That Parabola

- **1.** Use the given characteristics to write a function and sketch a graph of f(x).
 - a. Write a function in vertex form and sketch a graph that has these characteristics:
 - The function is quadratic.
 - The function is continuous.
 - The parabola opens upward.
 - The function is translated 5 units to the right of $f(x) = x^2$.

Equation: f(x) =

- b. Write a function in vertex form and sketch a graph that has these characteristics:
 - The function is quadratic.
 - The function is continuous.
 - The parabola opens downward.
 - The function is translated 1 unit down from $f(x) = -x^2$ and is vertically dilated with a dilation factor of 2.

- c. Write a function in vertex form and sketch a graph that has these characteristics:
 - The function is quadratic.
 - The function is continuous.
 - The parabola opens upward.
 - The function is translated 4 units down and 3 units to the left of $f(x) = x^2$.
 - The function is vertically dilated with a dilation factor of $\frac{1}{4}$.

- d. Write a function in vertex form and sketch a graph that has these characteristics:
 - The function is quadratic.
 - The function is continuous.
 - The parabola opens downward.
 - The function is translated 8 units up and 2 units to the right of $f(x) = x^2$.

Equation: f(x) =

2. Based on the equation of each function, describe how the graph of each function compares to the graph of $g(x) = x^2$.

a.
$$w(x) = (x + 2)^2$$

b. $t(x) = 3x^2 + 4$

c.
$$z(x) = -(x - 1)^2 - 10$$

d.
$$r(x) = \frac{1}{2}(x+6)^2 + 7$$

Carnegie Learning

Be prepared to share your solutions and methods.