2. Describe each graph in relation to its basic function.
a. Compare $f(x)=a x^{2}$ when $a>1$ to the basic function $g(x)=x^{2}$.
b. Compare $f(x)=a x^{2}$ when $0<a<1$ to the basic function $g(x)=x^{2}$.

PROBLEM 3 Name That Parabola

1. Use the given characteristics to write a function and sketch a graph of $f(x)$.
a. Write a function in vertex form and sketch a graph that has these characteristics:

- The function is quadratic.
- The function is continuous.
- The parabola opens upward.
- The function is translated 5 units to the right of $f(x)=x^{2}$.

Equation: $f(x)=$ \qquad

b. Write a function in vertex form and sketch a graph that has these characteristics:

- The function is quadratic.
- The function is continuous.
- The parabola opens downward.
- The function is translated 1 unit down from $f(x)=-x^{2}$ and is vertically dilated with a dilation factor of 2 .

Equation: $f(x)=$ \qquad

c. Write a function in vertex form and sketch a graph that has these characteristics:

- The function is quadratic.
- The function is continuous.
- The parabola opens upward.
- The function is translated 4 units down and 3 units to the left of $f(x)=x^{2}$.
- The function is vertically dilated with a dilation factor of $\frac{1}{4}$.

Equation: $f(x)=$

d. Write a function in vertex form and sketch a graph that has these characteristics:

- The function is quadratic.
- The function is continuous.
- The parabola opens downward.
- The function is translated 8 units up and 2 units to the right of $f(x)=x^{2}$.

Equation: $\quad f(x)=$ \qquad

2. Based on the equation of each function, describe how the graph of each function compares to the graph of $g(x)=x^{2}$.
a. $w(x)=(x+2)^{2}$
b. $t(x)=3 x^{2}+4$
c. $z(x)=-(x-1)^{2}-10$
d. $r(x)=\frac{1}{2}(x+6)^{2}+7$

Be prepared to share your solutions and methods.

