\qquad
\qquad

Transformations of Linear Functions, Parallel and Perpendicular Lines WS

The equation and graph of the basic linear function $f(x)=x$ are given. The equation of a transformed function $g(x)$ is also given. Describe the transformation(s) performed on $f(x)$ to produce $g(x)$ and graph $g(x)$.

$$
f(x)=x
$$

1) $g(x)=f(x)+5$

2)

$$
\begin{aligned}
& f(x)=x \\
& g(x)=f(x)-4
\end{aligned}
$$

2)

$$
\begin{gathered}
f(x)=x \\
g(x)=\frac{2}{3} f(x)
\end{gathered}
$$

4) $\begin{aligned} f(x) & =x \\ g(x) & =4 f(x)\end{aligned}$

Write an equation for each translated function $g(x)$ in terms of $f(x)$, and then simplify the equation.
5) $f(x)=3 x+1$ is translated 9 units up.
6) $f(x)=-2 x-7$ is translated 12 units down.

Determine an equation for each line described.
7) What is the equation of a line parallel to $y=\frac{4}{5} x+2$ that passes through (1,2)?
8) What is the equation of a line parallel to $y=-\frac{1}{2} x+6$ that passes through $(-4,1)$?
9) What is the equation of a line parallel to $y=-4 x-7$ that passes through $(2,-9)$?
10) What is the equation of a line perpendicular to $y=-\frac{2}{5} x-1$ that passes through $(2,-8)$?
11) What is the equation of a line perpendicular to $y=\frac{3}{4} x+12$ that passes through $(12,3)$?
12) What is the equation of a line perpendicular to $y=6 x-5$ that passes through $(6,-3)$?

