Trigonometry

Fill in the table and leave in decimal form!

sin **Graphs**

- $f(x) = \sin x$ х
- 1) Where does $\sin x = 0$?

0 π 6 π $\frac{-}{4}$ π 3

 $\frac{\pi}{2}$

 $\frac{3}{4}\pi$

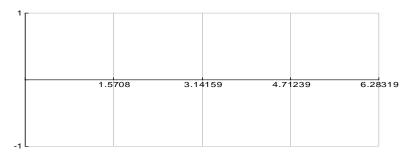
 π

 3π 2

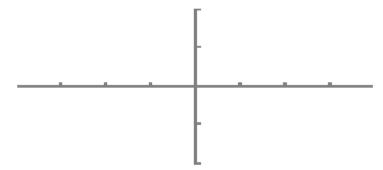
 2π

These are points where $\sin x = 0$ crosses the x - axis. Graph them

- 2) What is the maximum value of $\sin x$? Graph the points where the max is.
- 3) What is the minimum value of $\sin x$? Graph the points where the min is.
- 4) What is the range [y values] of $\sin x$?
- 5) What is the domain [x-values] of $\sin x$?
- 6) Complete your graph of $\sin x$ below.



7) Graph and label the graph at right for $f(x) = \sin x$; on the interval $-360^{\circ} \le x \le 360^{\circ}$



Fill in the table and leave in decimal form!

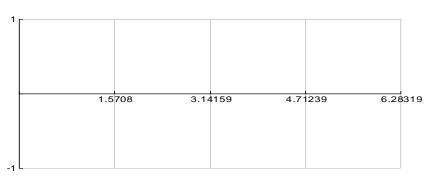
cos Graphs

- $x \qquad f(x) = \cos x$
- 0
- $\frac{\pi}{6}$
- $\frac{\pi}{4}$
- $\frac{\pi}{3}$
- $\frac{\pi}{2}$
- $\frac{3}{4}\pi$
- $\frac{\pi}{3\pi}$
- $\frac{3\pi}{2}$
- 2π

2) Where does $\cos x = 0$?

These are points where $\cos x = 0$ crosses the x - axis. Graph them

- 4) What is the maximum value of $\cos x$? Graph the points where the max is.
- 5) What is the minimum value of $\cos x$? Graph the points where the min is.
- 4) What is the range [y values] of $\cos x$?
- 5) What is the domain [x values] of $\cos x$?
- 6) Complete your graph of $\cos x$ below.



7) Graph and label the graph at right for $f(x) = \cos x$; on the interval $-360^{\circ} \le x \le 360^{\circ}$

tan & cot Graphs

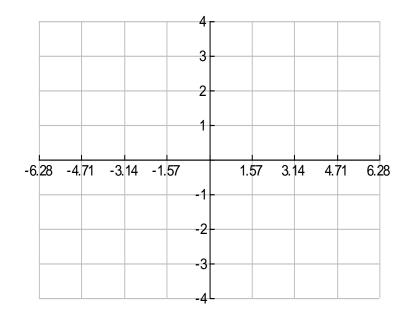
1) Plot the points where $f(x) = \tan x$ crosses the x - axis

(where $\sin x = 0$)

2) Is tan *x* undefined anywhere?

Draw asymptotes at these x-values (where $\cos x = 0$)

- 3) Where is $\tan x$ positive?
- 4) Where is $\tan x$ negative?
- 5) What is the range of $\tan x$?
- 6) What is the domain of $\tan x$?
- 7) Plot the points for $\tan\left(\frac{\pi}{4}\right)$ and complete the graph for $f(x) = \tan x$

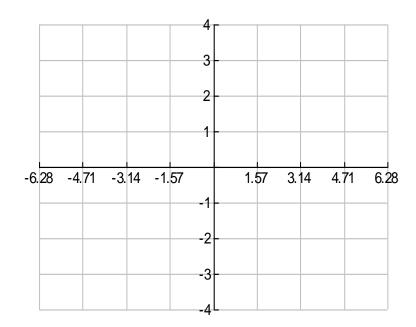


2) Plot the points where $g(x) = \cot x$ crosses the x - axis

(where cos x = 0)7) Is cot x undefined anywhere?

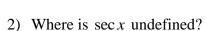
Draw asymptotes at these x – values (where $\sin x = 0$)

- 8) Where is $\cot x$ positive?
- 9) Where is $\cot x$ negative?
- 10) What is the range of $\cot x$?
- 11) What is the domain of $\cot x$?
- 7) Plot the points for $\cot\left(\frac{\pi}{4}\right)$ and complete the graph for $g(x) = \cot x$



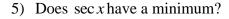
sec & csc Graphs

1) Graph $f(x) = \sec x$ in radians

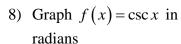


(where is $\cos x = 0$?)

- 3) Can $-1 < \sec x < 1$?
- 4) How often is $\sec x = 1$ on the interval $[-2\pi, 2\pi]$?



- 6) Does $\sec x$ have a maximum?
- 7) Draw in the vertical asymptotes with dotted lines

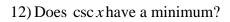


9) Where is $\csc x$ undefined?

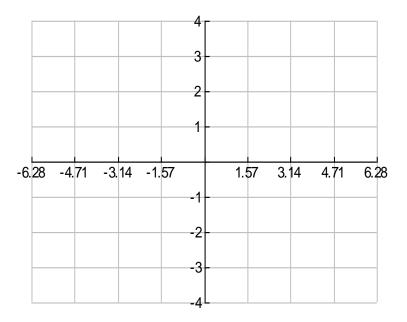
(Where is $\sin x = 0$?)

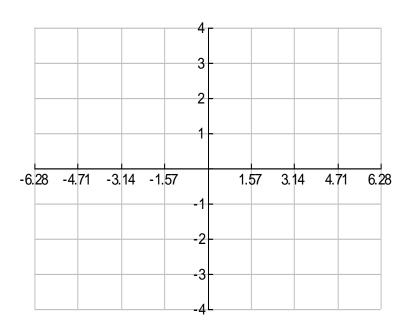
10) Can
$$-1 < \csc x < 1$$
?

11) How often is $\csc x = 1$ on the interval $[-2\pi, 2\pi]$?

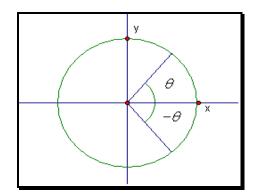


- 13) Does $\csc x$ have a maximum?
- 7) Draw in the vertical asymptotes with dotted lines





Trig Identities



$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta}$$

Note: In the unit circle diagram the difference between θ and $-\theta$. Both are on the right hand side (or positive) side of the x - axis. θ is on the positive side of the y - axis and $-\theta$ is below, on the negative side.

1. Calculate each of the following

a)
$$\cos\left(\frac{\pi}{3}\right) =$$

a)
$$\cos\left(\frac{\pi}{3}\right) =$$
 ______ b) $\cos\left(-\frac{\pi}{3}\right) =$ _____

c)
$$\cos\left(\frac{\pi}{4}\right) = \underline{\hspace{1cm}}$$

d)
$$\cos\left(-\frac{\pi}{4}\right) = \underline{\hspace{1cm}}$$

c) $\cos\left(\frac{\pi}{4}\right) =$ _____ d) $\cos\left(-\frac{\pi}{4}\right) =$ _____ g) How are each pair (a & b, c & d, e & f of the answers related to each other?

e)
$$\cos\left(\frac{5\pi}{6}\right) =$$

e)
$$\cos\left(\frac{5\pi}{6}\right) =$$
 _____ f) $\cos\left(-\frac{5\pi}{6}\right) =$ _____

h) From the above answers you can conclude that $\cos(-\theta) =$

2. Calculate each of the following

a)
$$\sin\left(\frac{\pi}{3}\right) =$$

a)
$$\sin\left(\frac{\pi}{3}\right) =$$
 _____ b) $\sin\left(-\frac{\pi}{3}\right) =$ _____

c)
$$\sin\left(\frac{\pi}{4}\right) =$$

d)
$$\sin\left(-\frac{\pi}{4}\right) = \underline{\hspace{1cm}}$$

c) $\sin\left(\frac{\pi}{4}\right) =$ _____ d) $\sin\left(-\frac{\pi}{4}\right) =$ _____ g) How are each pair (a & b, c & d, e & f) of the answers related to each other?

e)
$$\sin\left(\frac{5\pi}{6}\right) =$$

e)
$$\sin\left(\frac{5\pi}{6}\right) =$$
_____ f) $\sin\left(-\frac{5\pi}{6}\right) =$ _____

h) From the above answers you can conclude that $\sin(-\theta) =$

From our observations that $\cos(-\theta) = \cos\theta$ and that $\sin(-\theta) = -\sin\theta$ we can derive other 3. $\tan(-\theta) = \frac{\sin(-\theta)}{\cos(-\theta)} = \frac{-\sin\theta}{\cos\theta} = -\tan\theta$ identities. For example:

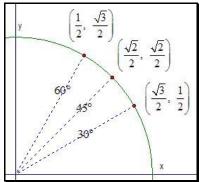
Complete the identities below:

a)
$$\sec(-\theta) = ----=$$

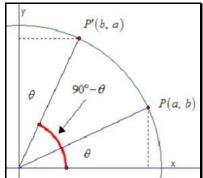
b)
$$\csc(-\theta) = ----=$$

c)
$$\cot(-\theta) = ----=$$

Cofunction Relationships



Note in the unit circle diagram above that the pattern repeats itself



Note the two congruent triangles whose vertices P and P' are shown. Witness how the x and y coordinates are switched

Complete the following table **4a**)

θ	90° – θ	$\sin \theta$	$\cos(90^{\circ}-\theta)$	$\sec \theta$	$\csc(90^{\circ}-\theta)$	$\tan \theta$	$\cot(90^{\circ}-\theta)$
0°							
30°							
45°							
60°							
90°							

4b) Fill out the identities below from your conclusions using the table above.

$$\cos(90^{\circ} - \theta) = \underline{\qquad} \quad \cos(90^{\circ} - \theta) = \underline{\qquad} \quad \cot(90^{\circ} - \theta) = \underline{\qquad}$$

$$\csc(90^{\circ}-\theta) = \underline{\hspace{1cm}}$$

$$\cot(90^{\circ}-\theta)=$$

$$\sin(90^{\circ}-\theta) =$$

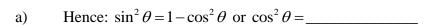
$$\sin(90^{\circ} - \theta) = \underline{\qquad} \qquad \sec(90^{\circ} - \theta) = \underline{\qquad} \qquad \tan(90^{\circ} - \theta) = \underline{\qquad}$$

$$\tan(90^{\circ}-\theta) =$$

5. Pythagorean identities

$$\cos^2\theta + \sin^2\theta = 1$$

Recall that applying the Pythagorean Theorem on any angle θ in the unit circle gives us



Divide every term on both sides of the boxed equation by $\cos^2 \theta$ b)

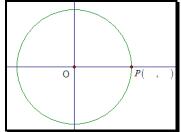
 $\sec^2 \theta = \underline{\hspace{1cm}}$

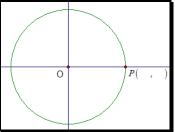
Divide every term on both sides of the boxed equation by $\sin^2 \theta$ c)

 $\csc^2 \theta =$

$$\cos(\alpha - \beta)$$

1) Draw angle α with terminal side in Quadrant II labeling the intersection with the $\underline{\mathbf{1}^{st}}$ unit circle as point A. Draw angle β with terminal side in Quadrant I, labeling the intersection with $\underline{\mathbf{1}^{st}}$ unit circle as point B.





2) Draw angle $\alpha - \beta$ with terminal side in Quadrant I labeling the intersection with the **2nd** unit circle as point *C*.

 $\angle AOB \cong \angle ????$

3) What are the coordinates in terms of trig functions for point A(x, y)?

(______, _____)

What are the coordinates in terms of trig functions for point B(x, y)?

(______,____)

What are the coordinates in terms $(\alpha - \beta)$ of trig functions for point C(x, y)?

(_____,___)

4) Substitute the coordinates for A and B into the distance formula to find the distance (A, B):

 $\sqrt{(-)^2 + (-)^2}$

5. Foil the above, two square binomial expressions into two trinomials.

 $\sqrt{}$ + + - +

6. Look for the identity $\sin^2 \theta + \cos^2 \theta = 1$. Make substitutions for both occurrences.

7. Substitute the coordinates for C & P into the distance formula to find the distance (C, P)

 $\sqrt{(}$ - $)^2 + ($ - $)^2$

8. Foil this like you did in step #5

√ - + +

- 9. Look for and substitute the trigonometric Pythagorean Identity, then copy equation from #6 below
- 10. Square both sides on above equation; subtract 2 from both sides; then divide both sides by -2

 $\cos(\alpha - \beta) =$

$$\cos(\alpha+\beta)$$
, $\sin(\alpha+\beta)$, $\sin(\alpha-\beta)$

- 11. To find $\cos(\alpha + \beta)$, rewrite the expression as $\cos(\alpha (-\beta))$ $\cos(\alpha (\underline{\hspace{1cm}})) = \cos(\underline{\hspace{1cm}})\cos(\underline{\hspace{1cm}}) + \sin(\underline{\hspace{1cm}})\sin(\underline{\hspace{1cm}})$
- 12. Substitute $\cos(-\theta) = \cos\theta$ identity and $\sin(-\theta) = -\sin\theta$ identity and rewrite the above equation $\cos(\alpha + \beta) = \underline{\hspace{1cm}}$
- 13. To find $\sin(\alpha + \beta)$, substitute $\cos(\frac{\pi}{2} \theta) = \sin\theta$ and $\sin(\frac{\pi}{2} \theta) = \cos\theta$ with $\theta = (\alpha + \beta)$ $\sin(\alpha + \beta) = \sin(\theta) = \cos(\underline{\qquad} \underline{\qquad}) = \cos(\frac{\pi}{2} (\underline{\qquad} + \underline{\qquad}))$
- 14. Distribute the negative sign and apply the associative property $\cos((\underline{} \underline{}) \underline{})$
- 15. Apply cosine angle subtraction formula

16. Substitute $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$ and $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$ identities and rewrite above equation

$$\sin(\alpha + \beta) =$$

- 17. To find $\sin(\alpha \beta)$, substitute $-\beta$ for β in $\sin(\alpha + \beta)$ formula. $\sin(\alpha + (-\beta)) = \underline{\hspace{1cm}}$
- 18. Substitute using identities from the method in #12

$$\sin(\alpha - \beta) = \underline{\hspace{1cm}}$$

Summarize: Sine and Cosine Angle Addition/Subtraction formulas

$$\sin(\alpha \pm \beta) =$$

$$\cos(\alpha \pm \beta) =$$

$$\tan(\alpha + \beta)$$

Now to derive the formula for $tan(\alpha + \beta)$.

1. First, fill in the formulas for:

$$\sin(\alpha + \beta) = \underline{\hspace{1cm}}$$

$$\cos(\alpha + \beta) = \underline{\hspace{1cm}}$$

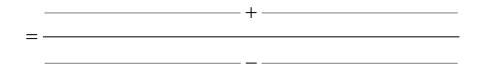
In terms of sin and cos, $\tan \theta = ----$ therefore $\tan(\alpha + \beta) = -----$ 2.

therefore
$$tan(\alpha + \beta) =$$

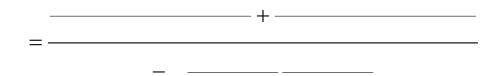
Substitute your formulas from #1 in the numerator and denominator of the quotient from above expression

$$\tan(\alpha + \beta) = \frac{+}{-}$$

4. Divide every term in the top and bottom by $\cos \alpha \cos \beta$



5. Look for terms that reduce to "1" or cancel



6. Rewrite each $\frac{\sin}{\cos}$ [of the same angle only] as tan of that angle. This is the desired formula.

$$\tan(\alpha+\beta)=$$

7. Find the exact value for $\tan\left(\frac{5\pi}{12}\right)$ in simplest radical form. Then verify your answer with your calculator

$$\tan(\alpha - \beta)$$

Now get the formula for $tan(\alpha - \beta)$

8. First fill in the formulas for

9. Use the negative formulas to find $tan(-\theta) = -----= = -----=$

Copy down formula derived earlier for $tan(\alpha + \beta) =$

And rewrite it as $tan(\alpha + (-\beta))$

$$\tan(\alpha + (-\beta)) = -$$

Substitute $-\tan \beta = \tan(-\beta)$ where appropriate

$$\tan(\alpha+\beta)=$$

Find the tangents in simple radical form and verify the answer with your calculator

10.
$$\tan\left(\frac{\pi}{12}\right)$$

11.
$$\tan(\theta + \pi)$$

Double Angle Formulas

1. Fill out each of the formulas we have derived so far:

 $\cos(\alpha \pm \beta) =$

 $\sin(\alpha \pm \beta) =$

 $\tan(\alpha \pm \beta) =$

2. To find the formulas for $\sin(2\alpha)$, use the sin addition formula and set $\beta = \alpha$ $\sin(\alpha + \alpha) = \underline{\hspace{1cm}}$

 $\sin(2\alpha) =$

3. To find formulas for $\cos(2\alpha)$ use the cos addition formula and set $\beta = \alpha$

 $\cos(\alpha + \alpha) =$

 $cos(2\alpha)=$

4. Greg dropped his calculator and now his "cos" button won't work. How can he find $\cos(2\alpha)$? Hint: $\sin^2\theta + \cos^2\theta = 1$

 $\cos(2\alpha) =$

5. Marsha hit Greg over the head with her calculator and now her "sin" button won't work. How can she find $\cos(2\alpha)$?

 $\cos(2\alpha) =$

- 6. Peter was taking a test but his y^x key and his multiplication key on his calculator broke and he had to find $\cos^4(15^\circ) \sin^4(15^\circ)$. What will he punch into his calculator to get the right answer? Hint: $a^2 b^2 = (a+b)(a-b)$
- 7. Not to be outdone by Marsha, Jan used the method of #2 and #3 to derive a formula for $\tan(2\alpha)$ in terms of the tangent function. Help Jan find her tan.

 $\tan(\alpha + \alpha) =$

 $\tan(2\alpha) =$

Half Angle Formulas

1a) Fill out all three of the double angle formulas for:

 $\cos(2\theta)$ = ____ = ___ = ___

- 1b) Let $x = 2\theta$. Solve this for θ . Then $\theta = ----$
- 2. Substitute the identities in step 1b) into the double angle formula that only has "cos" in it, so that x is the only variable. $\cos(x) =$

Add 1 to both sides

=

Dived both sides by 2

=

Take the square root of both sides -----

_

3. Substitute the identities in step 1b) into the double angle formula that only has "sin" in it, so that x is the only variable.

$$\cos(x) =$$

Subtract 1 from both sides —

=

Dived both sides by -2

_

Take the square root of both sides -----

_

4.

$$\pm \sqrt{\frac{1+\cos x}{2}} =$$

$$\pm \sqrt{\frac{1-\cos x}{2}} =$$

$$\tan\left(\frac{x}{2}\right)$$

1a) Fill out the double angle formulas for:

$$\tan(2\theta) =$$

Let $x = 2\theta$. Then $\theta =$ 1c)

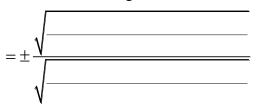
1b) And the half-angle formulas for:

$$\sin\left(\frac{\theta}{2}\right) =$$

$$\cos\left(\frac{\theta}{2}\right) =$$

2a) Write tan as sin over cos

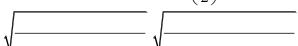
2b) Substitute the half angle formulas for sin over cos



Put under one giant square root sign, then "cancel" any common factors 2c)

Formula #1
$$= \tan\left(\frac{x}{2}\right) =$$

3a)Multiply top and bottom of $\tan\left(\frac{x}{2}\right)$ by $\sqrt{1-\cos x}$ 4a)Multiply top and bottom of $\tan\left(\frac{x}{2}\right)$ by $\sqrt{1+\cos x}$



3b)Don't foil the product. Use difference of two squares

4b)Don't foil the product. Use difference of two squares

3c)Substitute Pythagorean Identity for $1 - \cos^2 x$

$$\sqrt{\frac{\left(\begin{array}{ccc} - \end{array}\right)^2}{\left(\begin{array}{ccc} \end{array}\right)^2}}$$

4c)Substitute Pythagorean Identity for $1 - \cos^2 x$

$$\sqrt{\frac{\left(\phantom{\frac{1}{1}}\right)^2}{\left(\phantom{\frac{1}{1}}\right)^2}}$$

Formula #2

$$\tan\left(\frac{x}{2}\right) =$$

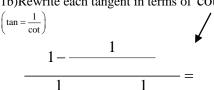
Formula #3

$$\tan\left(\frac{x}{2}\right) =$$

Formulas for $\cot(\alpha + \beta)$, $\cot(2\theta)$, $\cot(\frac{x}{2})$

1a) Fill in the missing parts

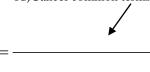
1b)Rewrite each tangent in terms of cot



1c)Find common denominator



1d)Cancel common terms



- 2 Substitute $-\beta$ for β and $\cot(-\theta)$ for $-\cot(\theta)$ into cot addition formula to derive difference formula $\cot(\alpha \beta) =$
- Derive a double angle formula for the tangent by using the angle addition formula in #1 $\cot(2\theta)$ =
- 3b) Since $\cot = \frac{1}{\tan}$, write the three different half angle formulas for the cotangent

$$\cot\left(\frac{x}{2}\right) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

- 4a) Using the $\cos\left(\frac{x}{2}\right)$ formula, derive a formula for $\sec\left(\frac{x}{2}\right)$
- 4b) Modify the formula so there is no $\sqrt{}$ in the denominator [hint: conjugate]
- 5a) Using the $\sin\left(\frac{x}{2}\right)$ formula, derive a formula for $\csc\left(\frac{x}{2}\right)$
- 5b) Modify the formula so there is no $\sqrt{}$ in the denominator [hint: conjugate]