\qquad

Fill in the table and leave in decimal form!

\sin Graphs

x	$f(x)=\sin x$
0	
$\frac{\pi}{6}$	
$\frac{\pi}{4}$	
$\frac{\pi}{3}$	
$\frac{\pi}{2}$	
$\frac{3}{4} \pi$	
π	
$\frac{3 \pi}{2}$	
2π	

1) Where does $\sin x=0$?

These are points where $\sin x=0$ crosses the x-axis. Graph them
2) What is the maximum value of $\sin x$?

Graph the points where the max is.
3) What is the minimum value of $\sin x$? Graph the points where the min is.
4) What is the range $[y-$ values $]$ of $\sin x$?
5) What is the domain $[x-$ values $]$ of $\sin x$?
6) Complete your graph of $\sin x$ below.

7) Graph and label the graph at right for $f(x)=\sin x$; on the interval $-360^{\circ} \leq x \leq 360^{\circ}$

Fill in the table and leave in decimal form!

cos Graphs

x	$f(x)=\cos x$
0	
$\frac{\pi}{6}$	
$\frac{\pi}{4}$	
$\frac{\pi}{3}$	
$\frac{\pi}{2}$	
$\frac{3}{4} \pi$	
π	
$\frac{3 \pi}{2}$	
2π	

2) Where does $\cos x=0$?

These are points where $\cos x=0$ crosses the x-axis. Graph them
4) What is the maximum value of $\cos x$? Graph the points where the max is.
5) What is the minimum value of $\cos x$?

Graph the points where the \min is.
4) What is the range $[y-v a l u e s]$ of $\cos x$?
6) Complete your graph of $\cos x$ below.

7) Graph and label the graph at right for $f(x)=\cos x$; on the interval $-360^{\circ} \leq x \leq 360^{\circ}$

$\tan \boldsymbol{\&} \cot$ Graphs

1) Plot the points where $f(x)=\tan x$ crosses the x-axis
(where $\sin x=0$)
2) Is $\tan x$ undefined anywhere?

Draw asymptotes at these
x-values
(where $\cos x=0$)
3) Where is $\tan x$ positive?
4) Where is $\tan x$ negative?
5) What is the range of $\tan x$?
6) What is the domain of $\tan x$?

7) Plot the points for $\tan \left(\frac{\pi}{4}\right)$ and complete the graph for $f(x)=\tan x$
2) Plot the points where
$g(x)=\cot x$ crosses the
x-axis
(where $\cos x=0$)
7) Is $\cot x$ undefined anywhere?

Draw asymptotes at these
x-values
(where $\sin x=0$)
8) Where is $\cot x$ positive?
9) Where is $\cot x$ negative?
10) What is the range of $\cot x$?
11) What is the domain of $\cot x$?

7) Plot the points for $\cot \left(\frac{\pi}{4}\right)$ and complete the graph for $g(x)=\cot x$
sec $\boldsymbol{\&}$ csc Graphs

1) Graph $f(x)=\sec x$ in radians
2) Where is $\sec x$ undefined?
(where is $\cos x=0$?)
3) Can $-1<\sec x<1$?
4) How often is $\sec x=1$ on the interval $[-2 \pi, 2 \pi]$?
5) Does $\sec x$ have a minimum?

6) Does $\sec x$ have a maximum?
7) Draw in the vertical asymptotes with dotted lines
8) Graph $f(x)=\csc x$ in radians
9) Where is $\csc x$ undefined?
(Where is $\sin x=0$?)
10) Can $-1<\csc x<1$?
11) How often is $\csc x=1$ on the interval $[-2 \pi, 2 \pi]$?
12) Does $\csc x$ have a minimum?
13) Does $\csc x$ have a maximum?

14) Draw in the vertical asymptotes with dotted lines

Trig Identities

$$
\begin{array}{ll}
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\sec \theta=\frac{1}{\cos \theta} & \csc \theta=\frac{1}{\sin \theta}
\end{array}
$$

Note: In the unit circle diagram the difference between θ and $-\theta$. Both are on the right hand side (or positive) side of the x-axis . θ is on the positive side of the y-axis and $-\theta$ is below, on the negative side.

1. Calculate each of the following

a) $\cos \left(\frac{\pi}{3}\right)=$ \qquad b) $\cos \left(-\frac{\pi}{3}\right)=$ \qquad
c) $\cos \left(\frac{\pi}{4}\right)=$ \qquad d) $\cos \left(-\frac{\pi}{4}\right)=$ \qquad g) How are each pair (a \& b, c \& d, e \& f of the answers related to each other?
e) $\cos \left(\frac{5 \pi}{6}\right)=$ \qquad f) $\cos \left(-\frac{5 \pi}{6}\right)=$ \qquad
h) From the above answers you can conclude that $\cos (-\theta)=$ \qquad

2. Calculate each of the following

a) $\sin \left(\frac{\pi}{3}\right)=$ \qquad b) $\sin \left(-\frac{\pi}{3}\right)=$ \qquad
c) $\sin \left(\frac{\pi}{4}\right)=$ \qquad d) $\sin \left(-\frac{\pi}{4}\right)=$ \qquad g) How are each pair (a \& b, c \& d, e \& f) of the answers related to each other?
e) $\sin \left(\frac{5 \pi}{6}\right)=$ \qquad f) $\sin \left(-\frac{5 \pi}{6}\right)=$ \qquad
h) From the above answers you can conclude that $\sin (-\theta)=$ \qquad
3. From our observations that $\cos (-\theta)=\cos \theta$ and that $\sin (-\theta)=-\sin \theta$ we can derive other identities. For example: $\tan (-\theta)=\frac{\sin (-\theta)}{\cos (-\theta)}=\frac{-\sin \theta}{\cos \theta}=-\tan \theta$
Complete the identities below:
a) $\sec (-\theta)=\square=$
b) $\csc (-\theta)=\square=$
c) $\quad \cot (-\theta)=\square=$

Cofunction Relationships

Note in the unit circle diagram above that the pattern repeats itself

Note the two congruent triangles whose vertices P and P^{\prime} are shown. Witness how the x and y coordinates are switched

4a) Complete the following table

θ	$90^{\circ}-\theta$	$\sin \theta$	$\cos \left(90^{\circ}-\theta\right)$	$\sec \theta$	$\csc \left(90^{\circ}-\theta\right)$	$\tan \theta$	$\cot \left(90^{\circ}-\theta\right)$
0°							
30°							
45°							
60°							
90°							

4b) Fill out the identities below from your conclusions using the table above.
\qquad
\qquad $\cot \left(90^{\circ}-\theta\right)=$ \qquad
$\sin \left(90^{\circ}-\theta\right)=$ \qquad

$$
\sec \left(90^{\circ}-\theta\right)=
$$

\qquad

$$
\tan \left(90^{\circ}-\theta\right)=
$$

\qquad

5. Pythagorean identities

Recall that applying the Pythagorean Theorem on any angle θ in the unit circle gives us
a) Hence: $\sin ^{2} \theta=1-\cos ^{2} \theta$ or $\cos ^{2} \theta=$ \qquad
b) Divide every term on both sides of the boxed equation by $\cos ^{2} \theta$

$$
\sec ^{2} \theta=
$$

\qquad
c) Divide every term on both sides of the boxed equation by $\sin ^{2} \theta$
$\csc ^{2} \theta=$ \qquad

$$
\cos (\alpha-\beta)
$$

1) Draw angle α with terminal side in Quadrant II labeling the intersection with the $\underline{1}^{\text {st }}$ unit circle as point A. Draw angle β with terminal side in Quadrant I , labeling the intersection with $\underline{\mathbf{1}}^{\text {st }}$ unit circle as point B.

2) Draw angle $\alpha-\beta$ with terminal side in Quadrant I labeling the intersection with the $\underline{\mathbf{2 n d}}$ unit circle as point C.
$\angle A O B \cong \angle ? ? ? ?$
3) What are the coordinates in terms of trig functions for point $A(x, y)$?
(\qquad , \qquad)
What are the coordinates in terms of trig functions for point $B(x, y)$?
\qquad , \qquad _)
What are the coordinates in terms $(\alpha-\beta)$ of trig functions for point $C(x, y)$? (\qquad , \qquad
4) Substitute the coordinates for A and B into the distance formula to find the distance (A, B) :
\square
5. Foil the above, two square binomial expressions into two trinomials.

6. Look for the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$. Make substitutions for both occurrences.

7. Foil this like you did in step \#5

8. Look for and substitute the trigonometric Pythagorean Identity, then copy equation from \#6 below $\sqrt{ }=\sqrt{ }$
9. Square both sides on above equation; subtract 2 from both sides; then divide both sides by -2
$\cos (\alpha-\beta)=$ \qquad

$$
\cos (\alpha+\beta), \sin (\alpha+\beta), \sin (\alpha-\beta)
$$

11. To find $\cos (\alpha+\beta)$, rewrite the expression as $\cos (\alpha-(-\beta))$ $\cos (\alpha-(\square))=\cos (\square) \cos (\square)+\sin (\square) \sin (\square)$
12. Substitute $\cos (-\theta)=\cos \theta$ identity and $\sin (-\theta)=-\sin \theta$ identity and rewrite the above equation $\cos (\alpha+\beta)=$ \qquad
13. To find $\sin (\alpha+\beta)$, substitute $\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$ and $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$ with $\theta=(\alpha+\beta)$

$$
\sin (\alpha+\beta)=\sin (\theta)=\cos \left(__{-}-\quad\right)=\cos \left(\frac{\pi}{2}-\left(__{+}+\ldots\right)\right)
$$

14. Distribute the negative sign and apply the associative property
$\cos \left(\left(\square_{-}-\quad\right)-_\right)$
15. Apply cosine angle subtraction formula

16. Substitute $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$ and $\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$ identities and rewrite above equation $\sin (\alpha+\beta)=$ \qquad
17. To find $\sin (\alpha-\beta)$, substitute $-\beta$ for β in $\sin (\alpha+\beta)$ formula. $\sin (\alpha+(-\beta))=$ \qquad
18. Substitute using identities from the method in \#12
$\sin (\alpha-\beta)=$ \qquad
Summarize: Sine and Cosine Angle Addition/ Subtraction formulas
$\sin (\alpha \pm \beta)=$
$\cos (\alpha \pm \beta)=$

$$
\tan (\alpha+\beta)
$$

Now to derive the formula for $\tan (\alpha+\beta)$.

1. First, fill in the formulas for: $\sin (\alpha+\beta)=$ \qquad

$$
\cos (\alpha+\beta)=
$$

\qquad
2. In terms of \sin and $\cos , \tan \theta=\square$ therefore $\tan (\alpha+\beta)=\square$
3. Substitute your formulas from $\# 1$ in the numerator and denominator of the quotient from above expression

$$
\tan (\alpha+\beta)=\frac{+}{-}
$$

4. Divide every term in the top and bottom by $\cos \alpha \cos \beta$

5. Look for terms that reduce to " 1 " or cancel

6. Rewrite each $\frac{\sin }{\cos }$ [of the same angle only] as tan of that angle. This is the desired formula.

$$
\tan (\alpha+\beta)=
$$

7. Find the exact value for $\tan \left(\frac{5 \pi}{12}\right)$ in simplest radical form. Then verify your answer with your calculator

$$
\tan (\alpha-\beta)
$$

Now get the formula for $\tan (\alpha-\beta)$
8. First fill in the formulas for

$$
\begin{aligned}
& \sin (-\theta)= \\
& \cos (-\theta)=
\end{aligned}
$$

9. Use the negative formulas to find $\tan (-\theta)=\square=$ \qquad

Copy down formula derived earlier for $\tan (\alpha+\beta)=$
And rewrite it as $\tan (\alpha+(-\beta))$

$$
\tan (\alpha+(-\beta))=\square
$$

Substitute $-\tan \beta=\tan (-\beta)$ where appropriate

$$
\tan (\alpha+\beta)=
$$

Find the tangents in simple radical form and verify the answer with your calculator
10. $\tan \left(\frac{\pi}{12}\right)$
11. $\tan (\theta+\pi)$

Double Angle Formulas

1. Fill out each of the formulas we have derived so far:

$\cos (\alpha \pm \beta)=$	\quad $\sin (\alpha \pm \beta)=$

2. To find the formulas for $\sin (2 \alpha)$, use the \sin addition formula and set $\beta=\alpha$

$$
\sin (\alpha+\alpha)=
$$

$$
\sin (2 \alpha)=
$$

3. To find formulas for $\cos (2 \alpha)$ use the \cos addition formula and set $\beta=\alpha$
\qquad

$$
\cos (2 \alpha)=
$$

4. Greg dropped his calculator and now his "cos" button won't work. How can he find $\cos (2 \alpha)$? Hint: $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\cos (2 \alpha)=
$$

5. Marsha hit Greg over the head with her calculator and now her "sin" button won't work. How can she find $\cos (2 \alpha)$?

$$
\cos (2 \alpha)=
$$

6. Peter was taking a test but his y^{x} key and his multiplication key on his calculator broke and he had to find $\cos ^{4}\left(15^{\circ}\right)-\sin ^{4}\left(15^{\circ}\right)$. What will he punch into his calculator to get the right answer? Hint: $a^{2}-b^{2}=(a+b)(a-b)$
7. Not to be outdone by Marsha, Jan used the method of \#2 and \#3 to derive a formula for $\tan (2 \alpha)$ in terms of the tangent function. Help Jan find her tan.
$\tan (\alpha+\alpha)=$ \qquad

$$
\tan (2 \alpha)=
$$

Half Angle Formulas

1a) Fill out all three of the double angle formulas for:

$$
\cos (2 \theta)=\square=
$$

1b) Let $x=2 \theta$. Solve this for θ. Then $\theta=\square$
2. Substitute the identities in step 1b) into the double angle formula that only has "cos" in it, so that x is the only variable.

$$
\cos (x)=
$$

Add 1 to both sides \longrightarrow

$$
=
$$

Dived both sides by $2 \longrightarrow$

$$
=
$$

Take the square root of both sides \square

$$
=
$$

3. Substitute the identities in step 1b) into the double angle formula that only has "sin" in it, so that x is the only variable.

$$
\cos (x)=
$$

Subtract 1 from both sides \qquad

$$
=
$$

Dived both sides by -2 \qquad

Take the square root of both sides \qquad
4.

$$
\pm \sqrt{\frac{1+\cos x}{2}}=
$$

$$
\pm \sqrt{\frac{1-\cos x}{2}}=
$$

$$
\tan \left(\frac{x}{2}\right)
$$

1a) Fill out the double angle formulas for:

1c) Let $x=2 \theta$. Then $\theta=-$

1b) And the half-angle formulas for:

$$
\sin \left(\frac{\theta}{2}\right)=
$$

$$
\cos \left(\frac{\theta}{2}\right)=
$$

2a) Write tan as sin overcos
2b) Substitute the half angle formulas for \sin over \cos

$$
\tan \left(\frac{\theta}{2}\right)=
$$

\qquad

2c) Put under one giant square root sign, then "cancel" any common factors
$= \pm \sqrt{\square}$
Formula \#1
$=\tan \left(\frac{x}{2}\right)=$

3a)Multiply top and bottom of $\tan \left(\frac{x}{2}\right)$ by $\sqrt{1-\cos x}$
$\sqrt{\square} \sqrt{\square}$
3b)Don't foil the product. Use difference of two squares

3c)Substitute Pythagorean Identity for $1-\cos ^{2} x$

Formula \#2

$$
\tan \left(\frac{x}{2}\right)=
$$

4a)Multiply top and bottom of $\tan \left(\frac{x}{2}\right)$ by $\sqrt{1+\cos x}$

4b)Don't foil the product. Use difference of two squares

4c)Substitute Pythagorean Identity for $1-\cos ^{2} x$

Formula \#3

$$
\tan \left(\frac{x}{2}\right)=
$$

$$
\text { Formulas for } \cot (\alpha+\beta), \cot (2 \theta), \cot \left(\frac{x}{2}\right)
$$

1a) Fill in the missing parts

$$
\cot (\alpha+\beta)=\frac{1}{\frac{+}{-}}=\frac{-}{+}
$$

1b)Rewrite each tangent in terms of cot

1c)Find common denominator

2 Substitute $-\beta$ for β and $\cot (-\theta)$ for $-\cot (\theta)$ into \cot addition formula to derive difference formula $\cot (\alpha-\beta)=$

3a) Derive a double angle formula for the tangent by using the angle addition formula in \# 1 $\cot (2 \theta)=$

3b) Since $\cot =\frac{1}{\tan }$, write the three different half angle formulas for the cotangent

$$
\cot \left(\frac{x}{2}\right)=\square=
$$

\qquad

4a) Using the $\cos \left(\frac{x}{2}\right)$ formula, derive a formula for $\sec \left(\frac{x}{2}\right)$

4b) Modify the formula so there is no $\sqrt{ }$ in the denominator [hint: conjugate]

5a) Using the $\sin \left(\frac{x}{2}\right)$ formula, derive a formula for $\csc \left(\frac{x}{2}\right)$

5b) Modify the formula so there is no $\sqrt{ }$ in the denominator [hint: conjugate]

