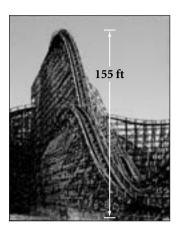
1-6 • Guided Problem Solving

GPS


Exercise 82

As riders plunge down the hill of a roller coaster, you can approximate the height h, in feet, above the ground of their roller-coaster car. Use the function $h = 155 - 16t^2$, where t is the number of seconds since the start of the descent.

- **a.** How far is a rider from the bottom of the hill after 1 second? 2 seconds?
- b. Critical Thinking Does it take more than or less than 4 seconds to reach the bottom? Explain.

Read and Understand

1. What do each of the variables in the function represent?

2. What are the units that would be used for values of h and t? ______

Plan and Solve

- **3.** How far is the rider from the bottom of the hill after 1 second?
- **4.** How far is the rider from the bottom of the hill after 2 seconds? _____
- 5. What value would you use for h if the roller coaster car were at the bottom of the hill?
- **6.** Does it take more than or less than 4 seconds to reach the bottom? Explain. ____

Look Back and Check

7. Explain how you use order of operations when using the roller coaster function.

Solve Another Problem

8. For a different roller coaster, the height h, in feet, above the ground of the roller-coaster car is approximated by the function $h = 200 - 16t^2$. How far is a rider from the bottom of the hill on this roller coaster after 2 seconds?